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Abstract-A system of two-dimensional equations is derived for high frequency motions of
crystal plates accounting for coupling of mechanical, electrical and thennal fields.

1. INTRODUCTION

In a recent paper [1], a system of two-dimensional equations, somewhat simpler in form than
previous ones, was derived for problems of vibrations of crystal plates in which there is
coupling between elastic and electric fields at frequencies as high as those of the fundamental
thickness-shear modes. In the present paper, the equations are extended to accommodate
coupling with a thermal field. There are already available the plate-equations derived by
Tasi and Herrmann [2), which include coupling of elastic and thermal fields, but a different
method for treating the thermal field is employed here in order to deal with all three fields
in the same way as in [1]. The mechanical displacement, electric potential and temperature
change are aU expanded in power series of the thickness-coordinate of the plate. The ex
pansions are inserted in an integral energy-equation including a dissipation function instead
of in a variational principle with an adjoint field to receive the dissipated energy. The energy
equation is analogous to Biot's [3] variational principle for the equations ofthermoelasticity.

Following the substitution of the series expressions in the integral equation of energy
balance, the integration with respect to the thickness coordinate is performed and two
dimensional equations of order n, analogous to the three-dimensional equations, are ex
tracted. This is followed by discard of variables and equations of the second and higher
orders and the usual adjustments of the remaining members. Finally, a uniqueness theorem,
analogous to Weiner's [4J for the thermoelastic case, is devised to establish various face
and edge-conditions sufficient to assure unique solutions of ,the two-dimensional equations.

2. THREE-DIMENSIONAL, LINEAR THERMOPIEZOELECTRICITY

The equations of the classical, linear theory of thermopiezoelectricity may be grouped as
divergence, gradient and constitutive equations for the mechanical, electrical and thermal
fields:

Divergence equations

Di,i =0, (1)

where T;j' Di , hi, uj , ,." p and eo are, respectively, the stress, electric displacement, heat flux,
mechanical displacement, entropy density, mass density and reference temperature.
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Gradient equations

R. D. MINDLIN

E i = -cp.;, (2)

where Sij' E i , cp, Kij and (J are, respectively, the strain, electric field, heat conduction coef
ficient and small temperature change: I(J I ~ 0 0 .

Constitutive equations

T i) =OGjOSij, D i = -oGjoEi , 11 = -oGjo(J, (3)

where G is the" electric Gibbs function" ([5], p. 34).
Equations (1), (2) and (3) comprise the twenty-seven equations of linear thermopiezo

electricity governing the twenty-seven dependent variables Ui , T ij , Sij, D;, E i , cp, hi, 11, (J.

The thermodynamic potential G is related to the potential energy density U by

G = U - E i D i - 110

in which 0, =00 + (J, is the absolute temperature. Explicitly, in terms of the variables Sij,

E i , (J and Mason's [5] symbols for the material coefficients,

G = tC~t,SijSkl - efJEiEj - pC:00 1
(J2 - e7jkEiSjk - pf(JEi - A~Sij(J. (4)

From (3) and (4), omitting, in the sequel, the superscripts E, S, (J on the symbols for the
material coefficients, we find:

Tij = Cijkl SkI - ekij E k - Aij (J,

D j = ejkl SkI + ejkEk +Pj (J,

11 = AklSkl + Pk E k + IX(J

(5)

where IX = pC:0o1.

By successive substitution, the twenty-seven equations may be reduced to five on Ui' cp
and (J:

Cijkl Uk, Ii + ekij cP ,k; - Aij (J,i = pUj ,

ekij Ui , jk - eij cP ,ij +Pi (J,; = 0,

k·U· . -p.r" . + IXO = 0 0-
1K.,(J '.'l I,) ''''',1 IJ ,I)

3. ENERGY EQUATION

In a body occupying a volume V, bounded by a surface S with outward normal n, the
principle of conservation of energy, appropriate to (1), (2) and (3), can be expressed [6] in a
form analogous to Biot's [3] variational principle for the thermoelastic case:

where

(6)

u=niDi , v = n i hi, on S, (7)

i.e. t j is the surface traction, u is the surface charge and v is the normal component of the
heat flux (across the surface). In the volume integral in (6), K is the kinetic energy density:

K = -!-PUiU;,
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F is the dissipation function:

F - lK e e ",,-1 - -lh e ",,-1-"2 ij ,i ,j\'JQ - "2 i ,;\:10 ,

and B is Biot's generalized free energy density [3]:

B = B(Sij' D i , fI) = V - eo fI = G + E i D i + fie,

with

(8)

e= oB/Ofl.

Now,

13 = (oB/oSij)Sij + (8B/8D;)D i + (8B/8f1)~,

= TiJtj, i - lfJ,i D i + e~,

= (TijUj),i - Tij, iUj - (lfJDi),i + D i , ilfJ + ~e.

Hence,

Also,

so that

f 2F dV = - f ni hi eeC; 1 dS + f hi, i eec; 1 d V.
Jy s y

Finally,

Upon substituting (9), (10) and (11) in (6), we find

f [(Tij,i - pii)uj - Di,ilfJ - (~+ hi,i e C;I)8] dV
y

(9)

(10)

(11)

It will be observed that the coefficients of Uj' lfJ and e, set equal to zero, give the divergence
equations (1) and the boundary values (7). This property will be employed in deriving
analogous plate-equations after expanding uj , lfJ and e in power series of the thickness
coordinate X2 and integrating with respect to X2'

4. UNIQUENESS OF SOLUTIONS

Paralleling Weiner's [4] uniqueness theorem for the thermoelastic case, the reverse of the
procedure leading from (6) to (12) can be employed to establish boundary conditions
sufficient to assure unique solutions of the twenty-seven equations (1-3).

Consider two sets of the twenty-seven dependent variables U i ' Tij, Sij' D i , E i , lfJ, hi, fI, e
(initially zero) distinguished by prime and double prime, each set comprising a solution of
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the twenty-seven equations. Let
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ui = ui - Ui', T;j = Tij - Tij, etc.

Since the twenty-seven equations are linear, the difference variables, uT etc. are also solu
tions. We write the equation

J[(T* "*)'* D'* * "* h* C-l)ll*]ij,i-PU j uj - ;,iqJ -(ry + ;,i"""OO dV=O
v

(13)

which is satisfied in view of (1). By the chain rule of differentiation and the divergence
theorem (omitting the stars, temporarily):

Jh· ·8 d V = J[(h. 8) . - h· 0 .J d V
" J 1 , ~ I ,1

V V

Employing (2), we have

Jni hi 8 dS - i h;fl,; dV.
s v

Jh. e.dV = - JK .. 0 .() . dV = - 0 0 J2F dV,I .1 IJ .1 ,J .
V V V

Now,

,. ....;\ d
TijSij + DiEi + ~O = T;jSij - DiL; -1JU + dt (E; D; + 1JO).

This becomes, with (3) (the last of the twenty-seven equations)

.. oG. aG. (jG e d
I;jSij + DiE; + ~O = as.. Sij + oE. Ei + 00 + dt (EiDi + 1JO)

1) 1

d dB
= - (G + E,D· + "0) = -.dt 1 1 'I. dt

Finally,

pili Ui = dKJdt.

Assembling these results and inserting them in (18), we have. with the stars reinstated,

~ f (K* + B*) d V = f nlT~ u; - D,!<p* - h:'9*0;; 1) dS - f 2F* d V, (14)
dt v s v

Now, the individual K, Band F are positive definite, by definition, and initially zero; so
that K*, B* and F*, calculated from the difference variables, have the same properties.
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Hence, if the integrand of the surface integral in (14) vanishes, K* and B* must be zero and
that is possible only if the two solutions are identical. Conditions sufficient to make the
integrand of the surface integral vanish (and, hence, conditions sufficient for a unique
solution) are the specification, at each point of S, of: one member of each of the three
products of traction and displacement components (referred to orthogonal directions
(x, {3, "I at the point) Taa U'l> Tap Up, Tay uy ; and either the surface charge, n; D;, or the surface
potential, qJ; and either the heat flux across the surface, ni hi, or the surface temperature
change, O.

Various conditions arising from interactions with the exterior of V may also be specified.
Of special interest, here, is the radiation condition:

nih i ke = 0, on S, (15)

where k is a positive constant ranging from zero for an adiabatic boundary to infinity (i.e.
o= 0) for an isothermal boundary. Suppose suitable boundary conditions have been speci
fied for the mechanical and electrical fields so that (14) reduces to

~ f (K* + B*) dV= -00 1 f ni hiO* dS - f 2F* dV. (16)
dt v s v

Add 0 01 Is kO*O* dS to each side of (16):

:t Iv(K* + B*) dV + 0 0 1 IsKo*e* dS = - 0 01 I/ni hi - kO*)()* dS - Iv2F* d V.

Then, since kO*e*00 1 is positive, the same argument as before yields (15) as an acceptable
boundary condition for the thermal field.

5. SERIES OF TWO-DIMENSIONAL EQUATIONS

The plate is referred to rectangular coordinates Xi with the faces, of area A, at X2 = ±b
and with Xl and X3 the coordinates in the middle plane which intersects the right cylindrical
or prismatic boundary of the plate in a curve or polygon C. We assume that Ui' <p and e
can be approximated by a power series in X 2 :

U. = " X2nU\n)
J ~ I'

n

<p = L x~ <pen),
n

(17)

where uin), <pen) and o(n), n =0, 1,2 ... are functions of Xl' X3 and t only. These expansions
are to be substituted in the energy-balance equation (12) and the integrations with respect
to X 2 performed. By the same procedure as in [1], the volume integral in (12) becomes

"I (T/".). - nT(".-l) + [xnT .]b - p" B u,,<.m») u' (n) dAL. , j, , 2J 2 2J - b L. mn J j
n A m

- LI (bi~l- nb~n-l) + [Xl b2]~b)<p(n) dA
n A

where
b

(T(n) D(n) (n) H(n») f n('T' D h) d
ij, i,l], i = X2~ij' ;,1], i X2,

-b

Bmn = 2bm+n+ 1/m + n + 1, m + n even

(19)
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and Bmn = 0 for m + n odd. Also, as in [1], the surface integral in (12) becomes the sum of
area integrals over the two faces of the plate and a line integral around the boundary C:

b

- L f f [(no T"j - t)x; U)n) - (no Do - o)x; o/(n) - (no ho - v)x; 0(n)00 I]C dX1 ds, (20)
n C -b

where the index a is planar. Define

(F\') S(·) N('») = [xn(t. (J V)]b
J" 2 J" -b

b

(t)'), (J('l, v(·») = f X;(t j , (J, v) dX1
-b

and insert these in (20). Then set the sum of (18) and (20) equal to zero to obtain the two
dimensional version of (12):

"f (T!~). - nT(·.-l) + p(n) - p" B ii\m»)u(') dA'-' 'j, , 1j j '-' m. j j
n A m

- Lf (D~~l- nDin-l) + s(n»)o/ (.) dA
n A

- L f (Hf~l- nHin-l) + N(') + 0 0 ~(.»)O(n)00 1 dA
• A

- L! [(no T"j - t)n»)U)') - (no D~n) - O'(n»)o/(.) - (no m') - v('»)O(')0oI] ds = O. (21)
• j C

Following the argument at the end of Article 3, we extract, from (21), the divergence equa
tions of order n:

T!~). - nT(·.-I) + p(') = P"B ii(m)
"J, r 2) J L. mn J '

m

D!n! - nD(l·-I) + Sen) = 0
It! ,

H!n) _ nH1('-l) + N(') = - 0
0
~(.)

'"
and the edge-values of order n:

n T(') = t(')
a Q] J'

Proceeding, now, to the gradient equations, we substitute (17) in (2) to obtain

Sij = L xi S~j),
n

E i = L x~ EI'),
•

hi = L x~ h)'),
•

(22)

where S!j), £I') and h~n) are given by the gradient equations of order n:

S!~) = ~[u(·). + u!·~ + (n + 1)«(\1 uj(.n+ 1) + (j1j' u!·+ I»)],
IJ Z}t r J,}

El') = - o/~n) - (n + 1)£52i 0/('+ 1),

hi(n) = - K. .[O(~) + (n + 1)(j1j' 0('+ 1)].
IJ ,j

(23)
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For the constitutive equations of order n we find, from (19) and (5):

T (n) "B (s(m) E(m) 1 (J(m»
ij = L. mn Cijkl kl - ekij k - /lij ,

m

D(n) "B ( scm) + E(m) + oem»~
j = L. mn e jkl kl Gkj k Pj ,

m

1J(n) - "B (A sCm) + p E(m) + rx(J(m»- f.., mn kl kl k k ,
m

Finally, from (19) and the third of (22),

H.(n) = _ "B K..[(J(m) + (m + 1)6 .o(m+l)]
J L..t mn IJ tJ 2]'

m

(24)

(25)

which, when restricted to orders zero and one, is an alternative to the third of (23): the ther
mal gradient equation of order n.

This completes the establishment of the two-dimensional, thermopiezoelectric equations
of order n.

6. TRUNCATION OF SERIES AND ADJUSTMENT

For frequencies up to those of the fundamental thickness-shear modes, the process of
truncation of the series of two-dimensional equations and adjustment of the remaining
terms begins with the discard of all the second and hig'lwr order terms. Thus, the first of (24)
becomes

(26)

and (25) becomes

HfO) = -2bKi/(J<j) + t5 2j (J(1», Hi = -!b3KijO~l, (27)

but these are only provisional as adjustments of the type employed by Cauchy [7J, Poisson
[8], Bresse [9] and Timoshenko [10] are to be made in order to compensate, in part, for the
omission of the higher order terms.

First of all, free development of the thickness-stretch strain S~~), =u~l), is allowed by
setting T1~) = 0 in (26). The resulting equation is solved for Si~) and that expression is used
to eliminate Si~ from the remaining TlJ), yielding

TlJ) = 2b(Cijkl S1?) - ekij E1°) - Xu (J(O»,

where

Xu = AU - Cij22 A 22 /C2 222 '

Then the Bresse-Timoshenko shear-correction factors, K 1 and K3' are introduced by the
replacement of ii, e and X by

cfJll = Kf+ j -2l(k+1-2 Cijkl, em = Kf+j-2 ekij, A~J) = Kf+j-2Xij (not summed),

where 11 and v are the powers cos2(ijn/2) and cos2(kln/2), respectively. Thus the final expres
sion for T(~) is

IJ

(28)
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In the case of the first order strains, free development of all three S~Y is required and
effected by setting TW = 0 in (26) and using the resulting three equations to eliminate the
Si)) from the remaining Tl]) with the result:

(29)

in which the indices a, h, C .•• range over I and 3 only; the C~~~d are the Voigt constants y
[II] and

1(1) _ 1 (I)
Aab - Aij Sijed Cabed ,

where the Sijkl are the elastic compliances.
It will be observed that u~1) no longer appears in (28) and (29) and that displacement com

ponent is eliminated entirely by dropping it from the kinetic energy density.
Further, following Tasi and Herrmann [2], thermal correction factors "i and "r may

be introduced by replacing the heat conduction coefficients "ab' in the expression for H~1),

from (27), by

"ab --+ Kab K~KJ (not summed).

An "electric Gibbs function" G that produces (28 and 29) through

TijO) = oG/oSIJ), Td~) = oG/oS~~)

IS

(30)

G- - h(c(O) S(O)S(O) - c E(O)E(O) - aO(O){}(O) - 2e(0)E!0)S<'0) - 2p.{}(0)E!0) - 2A\~)S!~){}(0)
- ijkl ij kl "ij i j I)k I)k , I I) I)

+ lb3(C(I) S(I)S(I) - /; E(1)E(I) - aO(l){}(1) - 2e(l) E(1)S(1)
3 abed ab ed ab a b abe a be

Finally, we define DIO), D~l), 11(0) and 11(1) by

DIO) = -oG/oElO), D~I) = -oG/oE~l), 11(0) = -aG/a{}(O), 11(1) = -aG/oO(I) (32)

to serve as adjusted expressions to replace those obtained from (24).

7. RECAPITULATION

Divergence equations

T(O) + F(O) = 2bpil(O)
aj,a} J '

D~?~ + S(O) = 0,

H~?~ + N(O) = - 00 ~(O),

T(I) - T(O) + F(I) = 2b3pii(l)
ab, a 2b b 3 b,

D(I) - D(O) + S(I) = 0
0, a 2 ,

H(I) - H(O) + N(I) = -0 ,;,(1).
0, a 2 0·, ,

(33)

Gradient equations

SIJ) = ·Hu)?l + ul,°) + (ji2 u)1) + (j2j uP)],

ElO) = -(Ip~?) + (ji21p(1),

HIO) = - 2bKii{}~J) + (j2j 0(1»,

S(1) = I(U(l) + u(1»
ab "2 b, a 0, b ,

E~I) = -1p~~J,

H~I)= -!b3K~~)e~t);

(34)
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Constitutive equations

T (O) - 2b(c(0) S(O) _ e(O)E(O) - A(O)O(O»ij - ijkl kl kij k ij ,

T~~) = ib3(C~UdS~~) - e~~6E~I) - A~~)O(1),

D(O) - 2b(e(0)S(0) + E E(O) + P 0(0»j - jkl kl jk k j ,

D~I) = -tb3(e~~JS~~) + EbcE~I) + PbO(!),

,,(0) = 2b(AI?)Skl + Pk EI°) + aO(O»,

,,0) = -tb3(A~})S~}) + PcE~I) + aOO»,

or
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(35a)

(0) _ 80
Tij - as(~)'

'J

where 0 is given by (31);

(I) _ 80
Tab - 8S0 )'

ab

(0) __ 00
" - 00(0)'

(0) __ 00
Di - oE(O)',

0) __ 00
" - 00(1)'

(35b)

Equationst on ufO>, u~l), q>(0), q>(l), 0(0), 0(1)

c(~)(u(O). + b u(ll) + e(~I(m(O) + b m(.ll) - A(~)0(9) + l.b -lp(O) = pii(O)I}kl k, II ZI k, I klJ 't' ,k< Zk 't' ,I IJ ,I Z } } ,

el?)(uJ~'!i + b2i uJ.1D - eiiq>~W + biZ q>:l» + Pi 0:2) +!b -IS(O) = 0, (36)

A~~)(u(Ol + b .u(.l) - p.(tn(9) + b. tnO» + a8(0) + lb- 10- IN(0) = 0- IK..(0(9) + b .0(1»
1) J, ~ 2l J l ..,... ,I 12 ..,... "2 0 0 I) ,I) 2) ,t

C~~~dU~~~a+ e~~lq>~J - A~~)O~) - 3b-Z(c~~il(U~~,! + bZkU~I»

+ e;~Uq>~?) + biZ q>(l) - A~!j}O(O)] + ~b-3P1l) = pii1l),

e~~6u1~L - Ebcq>~:) + PaO~J) - 3b-Z(e}~](uj?1 + bziujl) (37)

- Edq>:?) + biZ q>0» + PZ 0(0)] + ~b-3S(l) = 0,

AWu1~~ - Pa ¢~J) + a8~1) - 3b -2I(z/0:7) + bZj 0(1» + .fb- 30 oIN(I) = 0oIK~~)0~~6.

In addition, it is convenient to define a kinetic energy density and a dissipation function:

K = pbujO)ujO) + tpb3u1l)u11l, (38)

F = b00I Kij(O:?) + biZ 0(l)W7) + bZj 0(1» + tb30 0IK~~)O:J)O~:). (39)

8. UNIQUENESS AND FACE- AND EDGE·CONDITIONS

The plate equations comprise the forty-two equations (33-35) (a or b) on the forty-two
dependent variables u(O) u(l) r~?) Til) S~?) SO) D~O) DO) E(O) E(I) a/O) m(l) H~O) H(l)

1 , a , J)' ab' l-J' ab' J 'I a' I , a ''t'' , "f' , I , a ,

11(0), ,,(!), 0(0), 00 ). As before, we consider two sets of solutions, initially zero, identified by
prime and double prime, and their differences

t Note that the first two of (36) contain terms in 'Pl') which were inadvertently omitted in the corresponding
equations in fl].
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which are also solutions owing to the linearity of the equations. We form the equation

r[( T(O)* + p(O)* - 2bpii(O)*)ti(0)* + (T(I)* - T(O)* + p(l)* - 2b 3pii(1)*)·ti(l)*] dAaj. a j j j abo a 2b b :r b b
, A

-J[(i>~~~* + $(0)*)<p(0)* + (i>~~~* - i>~0)* + $(1)*)<p(!)*] dA
A

-J0 0 l[(H~~~* + N(O)* + 00 ~(0)*)8(0)*
A

+ (H~:~* - H~O)* + N(1)* + 00~(1)*)8(1)*] dA = 0, (40)

which is satisfied in view of (33). Omitting stars, temporarily, we have

J[T(O) ti(O) + (T(1) - T(O»ti(l)] dA = 1. n (T(O)ti(O) + T(1)ti(1» dsaj. a j abo a 2b b J a aj j ab b
A C

-J[T(~)(ti(O) + [). ti(!) + T(1)ti(l)] dA
I} J. I 12 J ab b. a ,

A

r [i>~?~<p(0) + (i>~:~ - i>~0»<p(1)] dA = 1. na(i>~O)<p(O) + i>~1)<p(1» ds
'A JC

- J[i>IO)(<p;iO) + [)i2 <p(1» + i>~l)<p~)] dA,
A

- J[H(0)(8(0) + <5. 8(1» + H(1)8(1)] dA
I ,I 12 a ,a •

A

Employing (34) we find

J[T(O)(u'(O) + ~ U'(I» + T(1)u(!)] dA = J(T(~)$\O) + T(1)$(1» dA
ij j, i ui2 j ab b. a IJ IJ ab ab ,

A A

J}i>IO)(<p:?) + [)i2 <p(!) + i>~1)<p:':)] dA = - t(i>!O)ElO) + i>~l)E~l» dA,

J[H!0)(8;?) + [)i2 8(1» + H~l)8~)] dA = - J[2bKi/8;?) + [)i2 8(1)(8;7) + [) 2j 8(1»
A A

+ 2b 3 K(1)8(1)8(l)] dA
""J ab ,0 ,b

= - 00 J2F dA, from (39).
A

Now,
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= dB/dt,
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B = G + EiQ)DiO) + E~l)D~l) + 11(0)8(0) + y/(l)O(l)

i.e. by comparison with (8), .8 is the plate analogue of Biot's generalized free energy. Finally,
from (38)

2bpii1°)itJO) + ib3pii~1)it~l) = dR/dt.

Assembling all these results and inserting them in (40), the latter becomes

~ f (R* + B*) dA
dt A

f A* dA +f C* ds - f 2F* dA,
A C A

(41)

where

A* = F}O)*it}O)* + F~1)*it~l)* - $(O)*cp(O)* - $O)*cpO)* - 00 IN(0)*8(O)* - 0; 1N(1)*e(1)*,

C* = n (T(~l*it<'O)* + T(l)*it(ll* - D(OJ*m(Ol* - D(ll*m(ll*
, a aJ J ab b a 'f' a 'f'

- 0 01Hd01*e(0)* - 0 0 1H,}1l*e(11*).

As in the three-dimensional case, the individual K, Band F are positive definite by definition
and initially zero, so that K*, .8* and F*, calculated from the difference-variables, have the
same properties. Hence, if A* and C* are zero, K* and B* must be zero and that is possible
only if the two solutions are identical. Conditions sufficient to make A* zero are: at each
point of the interior of the plate, specification of one member of each of the five products of
displacement and face-traction components (referred to orthogonal directions r:J., /3, Xz):

p(O)u(O) p(OJu(OJ F(O)u(O) p< l)u( 1) p( 1 )u( 1).
~ ~'fJ fJ'Z Z,~ ~'fJ fJ'

and one member of each of the two products of electric potential and face-charge:

cp(O)S(O), cpO)S(I);

and one member of each of the two products of temperature change and thermal flux:

8(OlN(°1, 8(1)N(1J.

Conditions sufficient to make C* zero are: at each point of the edge of the plate, specifica
tion of one member of each of the five products of edge-displacement and edge-traction
components (referred to orthogonal directions, n, s, X2 , with n the outward normal to C):

and one member of each of the two products of edge-potential and edge-charge:

and one member of each of the two products of edge-temperature change and thermal edge
flux:
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To find thermal radiation conditions for the faces and edges of the plate, add

k0 - 1 f (0(0)* + x O(] )*)2 _ dA + k0 1 /' (0(0)* + X eo )*)2 dAo 2 x2-b 0 • 2 x2=--b
'A 'A

b

+ k00 1,( f (8(0)* + x 2 O(l )*)2 dX2 ds
'Yc -b

= 2k00 1 f (0(0)*0(0)* + b28(])*(J(1)*) dA + 2bk00 1 ,( «()(O)*(J(O)* + tb20(l)*(J(1)*) ds
A 'Yc

to each side of (41) and note that the additional integrals are positive. The thermal terms on
the right-hand side of (41) are then

-001 f [(N(O)* 2k(J(O)*W(O)* + (N(1)* - 2kb2(J(l)*)8(1)*] dA
A

-00 1 t [(naH~O)* 2bk(J(O)*W(O)* + (naH~l)* -1b3(J(1)*)80H] ds.
, C

Hence, by the usual argument, the thermal radiation conditions are

N(O) - 2kO(O) = O. NO) - 2kb20(l) = 0

for the faces of the plate and

naH~O)-2bkO(0)=0, ntiH~l) ib3k()O)=0

for the edge of the plate. The constant k can be different for the interior and edge of the plate
as well as different for the two faces of the plate. In the latter case, the fluxes across the two
faces have to be distinguished:

N(O) =N<:!) -N<!!), N(1) =Nij) _N~l)

where

Then, for the faces of the plate, the radiation conditions are

N~) - k+(O(O) + bO(l» = 0,

N(O) + L((J(O) - bO(1) = 0,

Nij) - k+ b«(J(O) + bO(l» = 0,

N<.!) - k_ b(O<O) - bO(l» = O.

where k+ and k_ are the values of k for the faces X2 = band X2 -b, respectively.
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A6cTpaKT-Pa3pa60TaHa AByXMepHali CHCTeMa ypaBHeHHl!: IlJIli BbICOKOlfaCTOTHblX ,ll;BIDKeHllil:
KPHCTaJIJIlIlfecKHX nJIaCTHHOK, rrpHHHMalOlllali BO BHHMaHlfe B3aHMoIleJ:!CTBHe MeXaHH'IecKHX,
3neKTpOCTaTWIecKHx H TepMHlfecKHx 1I0nell:.
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